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The present paper deals with the practical and rigorous solution of the potential 
problem associated with the harmonic oscillation of a rigid body on a free surface. 
The body is assumed to have the form of either an elliptical cylinder or an 
ellipsoid. The use of Green’s function reduces the determination of the potential 
to the solution of an integral equation. The integral equation is solved numerically 
and the dependency of the hydrodynamic quantities such as added mass, added 
moment of inertia and damping coefficients of the rigid body on the frequency 
of the oscillation is established. 

1. Introduction 
A fluid motion caused by small prescribed oscillations of a rigid body on the 

free surface of an incompressible inviscid fluid is studied in this paper. The fluid 
is assumed to occupy a space bounded by the surface of the body and by the free 
surface extending in all directions. The induced motion of the fluid in this space 
interacts with the oscillating body and exerts the dynamic pressure on the 
immersed surface. A point of interest here is to find the effects of such pressure 
on the variation of the inertial and damping characteristics of the body per- 
forming a steady oscillation with a certain frequency. 

In  the formulation of the present problem, the boundary conditions will be 
linearized by neglecting high-order terms in view of the smallness of the motions 
involved. It is well known then that the potential which satisfies the linear 
conditions on the boundaries in the undisturbed position and the proper physical 
condition at infinity can be determined uniquely. Nevertheless, such a potential 
depends on the mode and frequency of the oscillation as well as the form of 
the body. 

For a body of general form Kotchin (1940) and John (1950) showed that the 
solution of the problem can be represented as a potential corresponding to a 
surface distribution of point sources. The strength of the sources is to be deter- 
mined from a Fredholm integral equation which satisfies a prescribed kinematic 
condition (appropriate to a specific oscillation) for the potential on the body 
surface. 

We present a procedure for the approximate solution of these integral equa- 
tions. In  two-dimensional problems the kernel of the integral equation is 
continuous, but in three-dimensional problems it becomes singular; the handling 
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of the singular term is one of the major problems of the present work. This 
procedure is valid for any shape which can be described analytically. 

Once the equations are solved, the dynamic forces F, and moments G, on the 
rigid body can be obtained by numerical quadrature. For instance, in three- 
dimensional problems resolving these into a component in phase with the 
acceleration and the other component in phase with the velocity, we write 

F, = -pG3MXj-pgZi3NXj (j = 1,2 ,3)  

for the linear oscillations xj(t) = Re [X;( t )  e-iu6], and 

G, = -pZi41dj-p(ra4H8j (j = 4,5 ,6)  

for the angular oscillations 
Oj ( t )  = Re[OjO(t)e-iut], 

where p represents the density of the fluid, Zi is the half-length of the body, and 
c is the frequency of oscillation. The dimensionless quantities M and N are 
called the added mass and linear damping coefficient, and similar quantities 
I and H are called the added moment of inertia and angular damping coefficient, 
respectively. For the case of two-dimensional problems the dynamic forces F’:) 
and moments G(d2) per unit length can be written in the same form with Zi3 and Z4 
replaced by Z i 2  and 2, respectively. 

These hydrodynamic quantities are functions of frequency or, more precisely, 
functions of the parameter Zicr2/g = a, g being the acceleration of gravity. In 
this paper we present results for simple shapes, ellipses in two dimensions and 
ellipsoids in three dimensions. In  order to gain some insight into the validity of 
the present method, the results are compared with the previous results obtained 
by a quite different method which was originally developed by Ursell (1949a, b ) .  
Added mass and the damping coefficient of heaving ellipses presented in figures 
15 and 16 showed good agreement with the results of Ursell(1949a) and Porter 
(1960). The same agreement is noted between the present results of surging 
ellipses in figures 13 and 14 and the work of Tasai (1961) who used Ursell’s method. 
The only results in three dimensions which are known to us are due to Havelock 
(1955) and Barakat (1962) and pertain only to a heaving sphere. These are 
compared with the corresponding curves in figures 3 and 4. It was noted that 
the present results are in complete agreement with those of Havelock. It would 
seem, on the basis of the limited evidence available, that the present procedure 
yields accurate results. 

Nevertheless, there is a fundamental limitation to the present numerical 
method. The kernels of the integral equations oscillate rapidly as the parameter 
a increases. Therefore, unless many subdivisions are used, the numerical 
quadratures occurring in the present procedure become inaccurate. In  this 
paper, we have limited the computations to values of a less than four, which 
covers the range of practical interest. For instance, in the three dimensions, it  
means that we have waves which are not much shorter than the length of the 
rigid body. Higher frequency results can be obtained with more computational 
labour. 
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The final objective of the present study is to assess the merit of various models 
adopted for the investigation of ship form. At &st, the hydrodynamic quantities 
such as the added mass, added moment of inertia, and damping coefficients of the 
ellipsoids having different axis ratios are estimated by the strip theory, using the 
two-dimensional data of a long cylinder. Next, the effect of the draft on the 
ellipsoids is examined in order to evaluate the applicability of the shallow-draft 
approximation (see Kim 1963). 

2. General formulation 
Consider arigid body immersedin aninviseid, incompressible fluid with its centre 

of gravity on the origin 0, and its axes on the (2 ,  ?)-plane of a space co-ordinate 
system OZF. The (5,Z)-plane here coincides with the undisturbed free surface, 
and we take the y-axis positive upwards. If the body is given linear and angular 
oscillations of small amplitudes % and 0 0  with a certain frequency (r about its 

z(t) = Re[?@e-i't], 

0(t) = Re 

equilibrium position, viz. 

the surface disturbance created by these motions travel outwards as waves in 
all directions. 

The position of the immersed surface S(Z, 2) relative to the space co-ordinates 
at any instance can now be expressed by specifying a position vector of the centre 
of gravity = fx, + + kx,, and the Eulerian angle 0 = 18, +is, + k8,. The 
linear components X,, 3, and X, are called surge, heave and sway, while the 
angular components 8,, 8, and Oa are named roll, yaw and pitch, respectively. 
Assuming the fluid to attain a time-periodic irrotational motion when transient 
motion dissipates, a velocity potential 

@ ( E ,  ij, Z ;  t )  = Re [ V(Z,jj, Z )  e--bt] (2.2) 

may be introduced to describe the state of the fluid. The incompressibility then 
requires that V is a solution of the potential equation 

V2V(z, ij, Z )  = 0 in y < 0, (2.3) 

where V is complex-valued. 
As the amplitude of oscillation is considered small, the amplitude of induced 

wave motion will also be small in comparison with the wavelength. Therefore, 
the linearized dynamic condition for the velocity potential at the undisturbed 
free surface becomes 

g qz, 5; t) + at@, 0, z; t )  = 0, 

where ?j represents the free surface elevation, and g the acceleration of gravity. 
Then the linearized kinematic condition @&E, 0, Z ;  t )  = ?jt(Z, Z ;  t )  and (2.4) yields 

a 
- V(Z, 0,Z) - kV(E, 0,Z) = 0 on J = 0,  
ay 

- _  
with k denoting the wave-number which is equal to a2/g = 2n/h, h being the 
length of free wave. 
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The kinematic condition which states that in the absence of viscosity the 
normal velocity across the immersed surface of the body is continuous takes the 
form 

- Q(z,T~,z;~)  = (X+bxF).n,  

where F represents the position vector of a material point on the body and n, the 
unit normal of the immersed surface, i.e. 

F = f E + j y + k  and n = in,+in,+&n,. 

Note that as the consequence of the linearization, the kinematic condition is to 
be satisfied on the surface in the undisturbed position. Thus, we find 

IL 

(2.6) 
a 
az 

6 a  
az z,y,z) = j=l =?(z,~,z) an = - i ( ~ [ Z ~ . n + ~ . ( F x n ) j ,  (2.7) 
a - v(- - - 

for six degrees of freedom in the problem. 

progressive wave a t  large distance, 
Finally, a disturbance in the finite region should produce only an outgoing 

V(P,  8, 3) - A (e) F-+ ekg+ik? + 0 as P + co, (2.8) 

where ;i. = (Z2+Z2)*, 8 = tan-l(Z/Z). 
In  order to show clearly the dependence of the solution on the frequency 

parameter a = Zk, Z being a typical length of the body (such as a half-length of 
the ellipsoid or a half-beam of the cylinder), we shall first make the space variables 
and the amplitudes dimensionless, i.e. 

x = x/Z, y = Tj/Z, z = 2/Z and XO = xQ/Z, 
then introduce the pressure function uj by 

(2.9) I 
l, 2y 3 ) J }  (2.10) 

i(Tq(z,y,Z)/g3x,o = auj(x, y,z) (j = 1,2,3) ,  

i (~q (2 ,  Tj, Z)/gZ6’j” = UU~(Z ,~J ,  Z) (j = 4,5,6) .  

It follows that the dynamic pressure IIj can now be expressed as 

I I3 (Z ,B ,Z ; t )  = -p[Qj(Z,?j,Z;t)It = pgZRe[X~auj(x,y,z)] (j = 

IIj(Z,Tj,Z;t) = -p[@j(Z,D,Z;t)]r  =pgZRe[8~auj(x,y,z)] (j = 4,5,6) .  

The boundary value problem which arises in the study of small harmonic 
oscillations of a body on the free surface is to find a potential uj(x,y,z), 
j = 1,2,3,  ..., 6, continuous in the fluid space such that 

(A) V2uj(x, y,z) = 0 in y < 0, ’1 

(2.11) 



(a) V2uj(x,y) = 0 in y < 0, 

(b) 
a 
a/ 
a 

- uj(x, 0) - auj(x, 0) = 0 outside C ( x ) ,  

( c )  %Uj(X,Y) = hj(.,Y) on C(4, 

3. Representation of the potential 
The source potentials G of unit strength in the lower half-space which satisfy 

the sets of boundary conditions (2.11 A, B, D) and (2.13 a, b, d )  can be expressed 
in the form 

G ( x ,  y, z ;  c, 7, () = R-l+ R’-l- na edg+q) [S,(aw) + &(aw) - i2Jo(aw)] 
0 

( 3 4  - 2a ea(u+q) e-ap(p2 + wz)-t dp, I,+, 
G(x ,  y; E,  7) = In w + In w’ + 2 ea(y+q) [cos a(x - E )  Cia Ix - 

+ sina Ix- 61 Si a 1 % -  LJ -In Jz- 51 + Snsina Ix - - incosa(x- E ) ]  
0 

- 2a ea(g+q)/y+q e-ap In [ (z - E)2 + p2]*dp. (3.2) 

where w = [(x - El2+  (9 - 11)21*1 = [(x - o2 + (Y + 11)21+ 
R = [w2 + (2 - ()2]4, R‘ = [w’, + ( X  - tJZ]S-, 

and &,(am) is the Struve function of order 0, Jo(aw) and Y,(aw) are the Bessel 
functions of the first and second kind of order zero, respectively, and Si a Ix - 51 
and Cia lz - l1 denote the integral sine and cosine functions. It should be noted 

I (2.13) 
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that the source potentials G are more tractable in the present form than in other 
expressions using Cauchy's principal-value integrals (see, for example, Wehausen 
& Laitone 1960). 

We now seek the solution of the boundary value problems (2.11) and (2.13) in 
the following form: 

where f represents the strength of distributed sources over the immersed surface 
S(x,  z )  or C(z), and is a continuous complex function. 

According to potential theory, the normal derivatives of the potential uj on 
S(x ,  x )  and C(z) are given by 

and 

Therefore, iff is determined from the integral equation 

- or 

uj will satisfy the boundary condition (2.11 C) or ( 2 . 1 3 ~ ) .  Accordingly, uj is the 
solution of the given problem. In  order that these integral equations be soluble, 
the homogeneous equations must possess only the trivial solution. John (1950) 
proved that the homogeneous equation cannot have a non-trivial solution for 
sufficiently large wavelength. 

We shall examine here the behaviour of the source potential and its normal 
derivative at the proximity of a point source: in (3.1) as a variable point (t, y,6) 
tends to the point source at (2, y, z)  on the immersed surface S(x,  z), i.e. R --f 0, 

become logarithmically singular since 
and m -+ 0, in addition to R-l being singular, Yo(uw) and e-ap(p2 + w2)-& d p  

r) > 

(3.9) i 
Y 

lim [Yo(aa) - -In (am)] = 0, 
a + O  7T 

R'-y-? 
e-ap(p2 + m2)-+ d p  - In ] = 0. 

r 
and 

However, because of the opposite signs these logarithmic terms cancel out and 

(3.10) we obtain 

with 
G ( x ,  y, 2;  5, ?, 6)  = R-l+ G*&, Y, z ;  5,r,6), 

G*(x, y, z ;  g,y, 6)  = R'-l- 2u ea(*+q) In [u(R' - y - y)] 
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where N,(aw) is a regular function defined by 

N,(aw) = Yo(aw) - &rln (aw). (3.11) 

Next in (3.2) as (t, 7) approaches the source a t  (x, y) along the periphery C(x) ,  
i.e. w+O, and Ix-51 + O ,  in addition to lnw and Inls- t (  being singular, 
Cia ]x - 61 behaves as 

(3.12) 

where y is Euler’s constant. Here the opposite signs on the logarithmic terms 
again cancel singularities so that we have 

with 
G(x7y; 5 7  7) = lnw+G*c(x, y;  5, T I ,  (3.13) 

G*(x, y; 5 , ~ )  = In a’ + 2 ea(y+v) cosa(x - 5) Cia Jx  - 51 +sina Jx - 61 Sia 12- [I 
-In (x- 51 + &nsina 1.- 51 - ineosa(x- 5) +a(y+q)ln w’ 

Let us now turn to the normal derivatives of the source functions. From 
(3.10) and (3.13) we find that 

and 

(3.14) 

(3.15) 

In (3.14) as R and w tend to zero (a/&) R-1 becomes indeterminate and the 
terms in (a/&) G* which contain powers of reciprocal distance such as w-l or 
becomes singular. However, when w = 0 the multiple factors of the reciprocal 
distances vanish simultaneously so that these reciprocal distance terms do not 
present the problem here (Kim 1964, Appendix). Finally in (3.15), as w and 
Iz - 51 tend to zero, (a/an) In w takes the value of (2R0)-l, where R, is the radius 
of curvature of the periphery at 5 = x. Therefore, no singular term appears in 
(3.15). 

Thus, the integrals containing the terms R-1, (a/&) R-l and In w in their 
integrands have to be evaluated using the special scheme. 

4. Forces and moments 
The forces and moments caused by the dynamic fluid pressure acting upon the 

immersed surface of an oscillating rigid body may be resolved into components 
in phase with the acceleration and other components in phase with the velocity 
of the rigid body. The former quantities are called added mass or added moment 
of inertia while the latter quantities are called linear or angular damping 
coefficients. 

We shall determine the forces and moments when an ellipsoid is excited into 
small harmonic oscillations about it equilibrium position on a free surface of 

28 Fluid Mech. 21 
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a fluid. Since the form of an ellipsoid is symmetric about the space axes lying on 
the free surface, from the result presented by John (1949), the forces F and 
moments G can be deduced as 

F(t) = Fd(t) -JopgX2(t) r Z 6  (j = 1,2,3) ,  
and 1 (4.1) 

G(t) = Gd(t)-ipge4(t)arE6(62+cz)-r<pgB,(t) t77E6(iiz+C2) (j = 4,5,6) ,  
where the dynamic forces and moments are given by 

~ , ( t )  = SS, q o ,  y, z; t )  n d ~ ,  ~ , ( t )  = SS, q ( z ,  y, x; t )  (r x n) d ~ ,  

and S represents the surface given by 

By (2.1) and (2.10), F, and G, can be rewritten in terms of the dimensionless 
space variables and amplitudes as 

y = C ( 1  -Z2/Z2-22/62)~, C c 0. 

(4.2) 1 F&) = pgE3Re [X,OSSsau,(z,y,z)ndSe-""] ( j  = 1,2,3), 

Gd(t) = pgE4 Re @,O and au&, y, z )  (r x n) dS e-iut (j = 4,5,6) .  [ ff, I 
Now, expressing the dynamic forces and moments with a component in phase 

with the acceleration and that in phase with the velocity of the ellipsoid, we 

obtain F,(t) = - B$(t) -Nzj(t) (j = 1,2,3) ,  
and Gd(t) = - I6i,(t) - fidj(t) (j = 4,5 ,6) .  

Then, the comparison of (4.2) with (4.3) yields 

M=:=Re Pa3 R [//suj(z,y,z)ndS] 9 

H = -  ' = Im [ / / su j (z ,  y, z )  (r x n) dS] (j = 4,5 ,6) ,  

m 

f 
Pa4 

pcra4 

N = p m 3  = Im[//suj(z,y,z)ndS] (j = 1,2,3) ,  

1 I = - = Re [//suj(x, y, z )  (r x n) dS , 

where M and N denote the dimensionless added mass and linear damping 
coefficient, and I and H denote the dimensionless added moment of inertia and 
angular damping coefficient, respectively. In  passing, we note that the quantities 

and damping 
coefficient 2fi, which are employed by Ursell (19494 and Havelock (1955) as 

where m represents the actual mass of fluid displaced by a rigid body. 

forced oscillations are given by 

and w in (4.3) can be related to the added mass coefficient 

= mk, and ]m = mcr(2h), (4.5) 

If a rigid body is a cylinder, the force F@) and moments G@) arising from small 

(4.6) 
F(')(t) = F$'-ijpgXz(t) 2Z (j = 1,2) ,  

and G@)(t) = G$) - pgO,(t) #Z(E2 + 6'), 
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where the dynamic forces and moments are given by 

nc2, - - F”:)(t) = lc nI$(Z, 3; t )  (in, +in,) dC, and G$)(t) = jc 3 (x, y; t )  (Zn, - iw,) dC, 

and C represents the periphery of the cylinder, Fj = 6( 1 - Z2/Z2)*, 5 < 0, and 
IIr),j = 1,2,3,  is the two-dimensional dynamic pressure. Rewriting the dynamic 
forces and moments in the form 

F’:) = pgZ2Re [xyjcau,(x,y) (In,+jn,)dCe-ii”] (j = 1,2) ,  

G$) = pgZ3 Re e: 
(4.7) I au3(x, y) (zn, - yn,) dC eciUl , i sc 1 and 

and identifying the component either in phase with the acceleration or the 
velocity from 

(4.8) 
F$)(t)  = - W(z)&(t) --W).%,(t) (j = 1,2), 

and G$)(t) = -Ii2’8’3(t) - IQ2)d3( t ) ,  

we obtain the dimensionless added mass, added moment of inertia and damping 
coefficients for a two-dimensional problem as 

It is often necessary to estimate the three-dimensional physical quantities 
knowing only the two-dimensional results. For instance, using the hydro- 
dynamic quantities of the cylinder (4.9), an attempt e m  be made to evaluate the 
same quantities of the ellipsoid (4.4). A method of relating the two-dimensional 
results to the three-dimensional estimates is called the ‘strip method’. In  the 
present problem, the added mass, M i ,  added moment of inertia, I;, and damping 
coefficients, N;  and H i ,  of an ellipsoid for modes of heave and roll can be evalu- 
ated by the following strip method formulae (for the derivation, see Kim 1963, 
Appendix 2): 

b2( 1 - 2 2 )  ME) [ab( 1 - x2)*] dx, 

(4.10) 

28-2 
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where M t ) ,  NT), I:’ and HE) denote the data of the cylinder. It will be shown 
presently how the estimates obtained by (4.10) compare with the corresponding 
three-dimensional data. 

5. Numerical procedure 
We are ultimately concerned with the solution of equations (3.7) and (3.8) for 

arbitrary values of a. Here (3.7) deals with an ellipsoid Z2/l i2  + g2/C2 + X2/62 = 1 , 
C < 0, which has length, beam and draft of 221, 26 and IS) while (3.8) deals with 
a cylinder having a cross-section Z2/li2+g2/g2 = 1, 6 < 0, in which 221 and 161 
denote beam and draft. Suitable co-ordinates which conform to these body 
forms are the ellipsoidal polar co-ordinates 

(5.1) 
x = cosasinq5, y = ccosq5, z = bsinasin$, 
g = cospsin$, 7 = ccos$, 6 = bsinpsin$, 

and the cylindrical polar co-ordinates 

\ 
I 

x = cos8, 
6 = COSE, 

y = bsin8, 
7 = bsine, 

where x, y, z and 6, 7, [ are dimensionless space variables, and b, c are dimension- 
less lengths resulting from dividing each physical length by a typical length of 
the body li. 

By use of the new co-ordinates we can express equations (3.7) and (3.8) in the 
form 

and - I$(€) - a G(8;  E )  R(E)& = 2Hj(8),  
4 ( 8 )  +‘In 7~ an (5.4) 

(5.5) 
where 
and R(0) = (sin28+ b2cos28)#. 

We restrict ourselves to the three-dimensional case since the two-dimensional 
equation is solved in an analogous manner. The method is based on Fredholm’s 
procedure of replacing the integral equation with a finite set of linear equations. 
Suppose the p- and $-axes which bound the region of integration S(p,$) are 
divided, respectively, into 24 and 6 equal divisions. Then, a lattice can be formed 
on S(p, $) by connecting the points of divisions with straight lines parallel to the 
p- and $-axes. The element of such a lattice is a square having the side h = +gr. 
Now, choosing the centroids of the elements as pivotal points, equation (5.3) is 
to be solved on these discrete points. Since the source strength, is a complex 
function, equation (5.3) can be separated into a pair of equations for the real and 

T(a, q5) = [(cos2a+sin2a/b2) sin2$ + COS~$/C~]+, 
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where, as has been noted earlier, the integral involving (a/an) R-l, R being the 
distance between a point source and a variable point, in Re [aG/an] is an improper 
integral. Nevertheless, this integral can be shown to exist. 

We turn to the evaluation of the following integral 

where 

and n(a, q5) being a unit normal on the surface S(P, @). Let us suppose X(a,  q5) 
and X(p, $) represent the position vectors of a point source and a variable point 
in its proximity. Then, by Taylor's expansion, we may write 

with Aa = &COST, A$ = 6sin7, and 6 = [(/3-a)2+($-$)21*, (5.9) 

where T = tan-,($- q5)/(/3-a). By the use of (5.8) and the binomial expansion, 
it can be shown'that (Kim 1964, Appendix) 

(A2a + A")* A2a sin2 $ + A2$ 
where A ,  = - 

2 (E+c2A2q5sin2q5)*' 

3Q(A2a sin2 q5 + A2q5) - A2aAq5 sin 24 
4(E + c2A2q5 sin2 q5)* 

B, = 9 

and E = E(Aa,Aq5) 

= (Aa sin a sin $ - Aq5 cos a cos q5)z + b2(Aa cos a sin q5 + A$ sin a sin $)2. 

It follows then that 

(5.11) 

Thus, on the transformed plane as X(p, $) tends to X(a, q5), the function (a/an)B-l 
possesses a part which involves the reciprocal distance, and an indeterminate 
part which depends upon the angle of approach. 
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By (5.7) and (5.9), the part of the integral 11, taken over the neighbourhood 
element A, can be approximated as 

1 csc 7 I ( cos2 7 sin2 q5 + sin2 7 )  d7 
+ ’ (E  + c2 sin2 7 sin2 

(5.12) 

where the &integration is carried out explicitly with h(7) given by 

and the second integral is evaluated using Simpson’s rule since its integrand 
vanishes a t  (P, @) = (a, 4). Furthermore, it  should be noted that 

The remaining part of the integral II taken over S - b can be approximated by 
use of Simpson’s rule. 

Application of the formula (5.12) and Simpson’s rule enables us to  write out 
the double summations in (5.6) as a linear combination of Re [I$] and Im [F,] so 
that we can obtain a finite set of linear equations for each mode of oscillation. 

By (5.1), the right-hand members for the six degrees of freedom are obtained 
from (2.12) as 

cos a sin q5 cos q5 sin a sin q5 
H H,(a,$) = -- H,(a,$) = -___ 

T(a,  q5) ’ - cT(a, 9)’ 

1 - c2 cos asin $ cos $ 
T(a, $1 

and Hs(a,q5) = __ 
C 

Here the strength of source l$ in the problem depends not only upon the mode 
and frequency of the oscillation, but also upon the form of the body. Since the 
immersed surface of an ellipsoid possesses symmetry about the Z and Z axes, we 
expect F,. to exhibit the corresponding symmetry. However, due to the trans- 
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formation of co-ordinates by (5.1) this symmetry is to be expressed in terms of 
the variable a. For the specific modes of oscillation, we note that 

6(a ,  $1 = 6 (  - a, $1 = - &, 6(n  - 9) = - F1, 6 ( n  f a, $)>’ 

(5.14) 1 F2(a, $1 = F2( - a, q5) = F 2 b  - a, 9) = m77 +a, $), 

F5(a,$75) = -F5(-a,q5) = -F5(n--a,#) = F (  5 n+4q5). 
4,4(a,q5) = - 4 , 4 ( - & , $ )  = 4,4b-a,$) = -4 ,4(n++,$) ,  

On the basis of such symmetric properties, it is sufficient to consider the linear 
equations (5.6) only a t  36 pivotal points contained in one quadrant. Further- 
more, relating the values of I$ in other quadrants by (5.14), a rectangular matrix 
produced by the double summation of (5.6) should be folded into a square-form 
matrix for the solution of Re [q] and Im [I$] from 72 linear equations. 

Having found the real and imaginary parts of the source strength 4.) the 
pressure function uj can be determined from 

where an approximation formula for the improper integral 

(5.16) 

in Re [GI may be derived repeating the same reasoning employed in connexion 
with the improper integral Il. Here we find that 

lim € 2 4  [k- ( iA2+B2)]  = 0, 

(A2a + Az#)* 1 n B2 = -- where 
= (E  + c2A2q5 sin2 q5)* ’ 2 ( E  + c2A2q5 sin2 q5)* 

(5.17) 

It follows then that 
]seer1 dr [Sf;, (E + c2 sin2 r sin2 q5)% 

[121a M ah2 bcF(a, q5) 

where B2d88dr = 0, since B2(n+r) = - B2(r). 

Again, the remaining part of the integral I2 taken over S - A can be approximated 
by use of Simpson’s rule. We remark here that the use of the symmetry (5.14) 
facilitates the evaluation of the pressure function uj by (5.15) for a given mode 
of oscillation. 
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6. Results and discussion 
In  this paper, the three-dimensional problem was solved for a half-ellipsoid 

having beam to length ratio 8/5 = 4; and its special case, a half-spheroid 615 = 1. 
Consideration was given to the effect of draft by varying the half-length to draft 
ratio 515 as H = 4,2,1 and 4 for the spheroid, H = 4 and 2 for the 4 ellipsoid. 
Furthermore, the two-dimensional problem was solved for a half-cylinder of an 
elliptic cross-section having half-beam to draft ratios Z/6, H = 4, 2 ,  1 and 4. 
The computation was generally performed with the values of the frequency 

0 1 2 3 4 
a 

FIGURE 1. Added mass for surging (or swaying) spheroids M ,  = mX/pZ3 
as a function of a = iZ&/g. 

3.0 

2.0 

I I I 

0 i 2 3 4 
a 

FIGURE 2. Damping coefficient for surging (or swaying) spheroids N ,  = s s / p ~ Z 3  
as a function of a = Ba2/g .  
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parameter a = 0,0~10,0-25 ,0~50,0~75,  1.0, 1.5,2*0, 2*5,3*0 and 3-5 (except when 
more points were necessary due to a rapid change of curvature). According to 
the definition of the frequency parameter the minimum and maximum values of 
a correspond, respectively, to the cases in which the length of the wave generated 

a 

FIGURE 3. Added mass for heaving spheroids M ,  = x y / p Z 3  
as a function of a = izo2/g.  

0 2 3 4 

a 

FIGURE 4. Damping coefficient for heaving spheroids N ,  = f l , / p d  
as a function of a = Ti&/g. 

by forced oscillation is approximately equal to 30 and to 1 times the length of the 
ellipsoid (or the beam of the cylinder). From the asymptotic behaviour of the 
kernel of the integral equation, it can be seen that as the value of a becomes large 
the oscillation of the kernel grows rapidly. For this reason, if the value of a is 
increased beyond the present range, a quite large number of pivotal points are 
required. Therefore, higher frequency results could be obtained with more compu- 
tational labour, but it would be profitable to devise a different technique in line 
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with Ursell's approach (1953). He obtained the higher frequency asymptotics 
from the solution of an integral equation in which the boundary values of a 
wave-potential occurs as unknown. 

0.08 

0.04 

O r  

" 0 1 2 3 4 

a 

F I G ~ E  5. Added moment of inertia for pitching (or rolling) spheroids 
I ,  = I , / p S  as a function of a = Siaz/g. 

- 

- 

0.12 [ Spheroid 

1 
0 1 2 3 4 

a 

FIGURE 6. Damping coefficient for pitching (or rolling) spheroids 
H ,  = RZ/pia7i4 as a function of a = Zr2/g. 

For each combination of the parameters 6/Z7 H and a of an ellipsoid (or H and a 
of a cylinder) several sets of linear equations describing specific modes of oscilla- 
tion were solved. Then, from the solutions of the linear equations, the pivotal 
values of the pressure were determined. Subsequently, summation of the real 
and imaginary parts of these pressures over the immersed surface by Simpson's 
rule yielded the hydrodynamic quantities. In  figures 1-6, the dependence of the 
hydrodynamic quantities on the frequency parameter a, for the spheroids having 
various drafts are presented. M, and N, represent the normalized added mass 
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and associated damping coefficient for surge, M,, and N,, represent the normalized 
added mass and associated damping coefficient for heave, and ID and H, represent 
the normalized added moment of inertia and associated angular damping 
coefficient for pitch, respectively. 

0.06 Ellipsoid 
* 

Beam/length = 1/4 
half-length H ==- 

draft 

0.04 

x, 

0.02 . 

Is 
0 1 2 3 4 

a 

FIGURE 7. Added mass for surging ellipsoids M ,  = z , / p Z 3  
as a function of a = izu2/g. 

a 

FIGURE 8. Damping coefficients for surging ellipsoids N, = f l , / p ~ i z ~  
as a function of a = iiu2/g. 

The dependence on the parameter a of the same quantities for the 4 ellipsoid 
having various drafts is presented in figures 7-12. The last set of figures (figures 
13-18) elucidate how two-dimensional hydrodynamic quantities vary with the 
parameter a and with the draft. Here N!$ and Ng)  represent the normalized 
added mass and associated damping coefficient for sway, and Ii2) and HL2) 
represent the normalized added moment of inertia and associated angular 
damping coefficient for roll. 
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In  figures 3 and 4, and figures 15 and 16, variation of M, and Nv for spheroids 

and that of 2Mg) and N g )  for cylinders are shown. The problem of a heaving 
cylinder was first worked out by Ursell(19494. He made use of a wave potential 
which consists of a set of non-orthogonal polynomials and a suitable point source 

0 1 2 3 4 

a 

FIGURE 9. Added mass for heaving ellipsoids M, = a,/piZs 
as a function of a = Zu2/g. 

I 
0.10 

I 

Ellipsoid 

I I I v Beam/len&h = 1/4 
I 

FIGURE 

0 1 2 3 4 

a 

10. Damping coefficient for heaving ellipsoids N, = fl,/pua" 
as a function of a = Za2/g. 

a t  the origin on the physical ground that the forced oscillation of a rigid body 
produces a standing wave in its vicinity and a progressive wave at  a large distance 
from the body. Ursell's method has been employed by Porter (1960) for the 
study of heaving cylinders having an elliptic cross-section. The extension of 
Ursell's method to the three-dimensional problem of a heaving spheroid can also 
be seen in papers of MacCamy (1954), Havelock (1955) and Barakat (1962). 
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The broken curves in the two sets of drawings, figures 3 and 4, and figures 15 
and 16, indicate the present results, which indicate good agreement with the 
previous results obtained respectively by Havelock, Ursell and Porter as so 

Ellipsoid 
0-06 

H-CO Beam/length = 1/4 
0---’---* half-length 

H =  -draft 
-\ q. 

G63 * -- 0.04 

I ,  

0 
0 1 2 3 4 

a 

FIGURE 11. Added moment of inertia for pitching ellipsoids I, 
as a function of a = 7ia2/g. 

= &/psi4 

1 2 3 4 

a 

FIGURE 12. Damping coefficient for pitching ellipsoids H,  = ~ , / p b s i 4  
as a function of a = 7ia2/g. 

labelled. The curves attributed to MacCamy in both sets correspond to thefirst- 
order solutions of the shallow-draft approximation applied to a rigid body with 
small draft (see MacCamy 1961). In  effect, those represent exact solutions of 
a heaving circular disk in figures 3 and 4, and of a heaving plate in figures 15 and 
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16. We note that M,, N, and Nf) increase systematically as the draft of the body 
decreases. In a limiting case H = 00 when the draft is zero, the wave-making 
effect attains its maximum. 

3.0 

2.0 

MP’ 

1 .o 

0 
0 1 2 3 4 

a 

FIQURE 13. Added mass for swaying cylinders M:) = afl/p?ia 
as a function of a = au2/g. 

1.5 

1 .o 

0.5 

0 1 2 3 4 
a 

FIGURE 14. Damping coefficient for swaying cylinders NP) = fl$)/puZa 
as a function of a = Siu2/g. 

The low-frequency asymptotics of three-dimensional potentials can be shown 
(Kim 1964) as 

wheref,, is the solution of 
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a 

FIUURE 15. Added mass for heaving cylinders M f )  = @?/psi2 
as a function of a = siu2/g. 

0 1 2 3 4 

a 

FIGURE 16. Damping coefficient for heaving cylinders NF) = flF)/puZz 
as a function of a = ?iaz/g. 

Hence, the limiting value of Mu which was evaluated using the real part of u(3)(0) 
becomes a non-zero constant, while the limiting value of Nu which uses the imagi- 
nary part of d3)(0) vanishes. For a heaving sphere Ursellt found that the high- 
frequency asymptotics depend upon the potential 

(6.2) u ~ ( w )  - i3a-1 e-ia r t  eau+iar as r --f w, 

f Prof. Ursell provided the author with his high-frequency results. Here, expressions 
(6.2) and (6.3) were obtained by converting Prof. Ursell’s results according to the nor- 
malization used in the present paper. 
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and it follows that 
97T 

and IimN, - - 
a-m lim M,, - 71 (i-k), a-m a4’ 

We remark that as the present computation ranges up to the wavelength Si equal 
to the length of the sphere 2Z, the high-frequency asymptotics (6.3) cannot be 

$a) 
5 

0 1 2 3 4 

a 

FIGURE 17. Added moment of inertia for rolling cylinders 1:) = 
as a function of a = ?iu2/g. 

0 1 2 3 4 

a 

FIGURE 18. Damping coefficient for rolling cylinders HP’ = Bia)/paZi3 
as a function of a,= Zia2/g. 

joined to the present results. However, we find that in the range of the parameter 
a = 3.0 - 4.0 the result given by (6.3) lies slightly above the present M, ( H  = 1) 
curve. 
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In  figures 15 and 16, i t  should be observed that due to the property of the 
potential u@)(O), which also can be shown as 

foo(lnw+lnmf)dC+iO 

if foo is an odd function of x, 

foo dC 

~ ( ~ ’ ( 0 )  = lim u(x,  y) = 4 

O(ln a) - i s, a-0 

the limiting value of M$? becomes logarithmically infinite while that of N$2) 
becomes a non-zero constant. Havelock has attributed the infinite value of Mi2) 
to the fact that when a = 0, the condition at the free surface, i.e. uy = 0, makes 
the two-dimensional problem indeterminate. We emphasize that the different 
behaviour of the lower asymptotics in the two- and three-dimensional problems 
exhibited by (6.1) and (6.4) deprives the ‘strip method’ of being a useful way of 
estimating the three-dimensional hydrodynamic quantities from the two- 
dimensional data. For a circular cylinder Ursell (1953) obtained the high- 
frequency asymptotics as 

Note that the Mg)(H = 1) curve in figure 15 lies slightly below that given by (6.6). 
Next, let us look a t  the two sets of drawings, figures 1 and 2, and figures 13 

and 14, which present, for the sway mode, the normalized added mass and 
associated damping coefficient of spheroids and those of cylinders as a function 
of the parameter a. In  the case of a spheroid, sway and surge are the same mode. 
By the use of Ursell’s method, which can be used conveniently whenever the 
mapping of the cross-section of a cylinder on a circle is known explicitly, Tasai 
(1961) obtained the added mass coefficient @) = [2H/7r]M(,2) and the amplitude 
ratio ,.4(,2) = a[N(,2)]* up to the value of a = 1.5. The present results are in complete 
agreement with Tasai’s results. In  figure 1 we observe that M, for the sphere 
H = 1 increases from the initial value 1.06 to the peak value 1-37 a t  about 
a = 0-75, falls to 0.32 a t  a = 3.50, then gradually rises to the final value 0.57 as 
shown by Macagno & Landweber (1960). From (6.1) and (6.4) it can be noted 
that as the frequency tends to zero, M, and Mg) become non-zero constants while 
N, and Nf) vanish. For sway, the hydrodynamic quantities decrease in their 
magnitudes with the reduction of draft. Thus, in the limiting case H = 03 when 
the body form is a disk, as it is clear from a physical reason, no disturbance will 
be created by the mode of sway on the free surface. 
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The variations of added moment of inertia and angular damping coefficient of 
spheroids and cylinders with rolling frequency are seen in figures 5 and 6, and 
figures 17 and 18. Since roll and pitch are the same mode for a spheroid, the 
broken curves in figures 5 and 6 indicate added moment of inertia and associated 
damping coefficient of a rolling or pitching circular disk. We note that either a flat 
or a thin body form produces a large wave-making effect in the mode of roll. 

a M ,  M ;  AT, 

For spheroid H = 2 

0.50 1.65 1.86 0.88 
1.00 1.22 1.48 0.79 
1.50 1.04 1.41 0.63 
2.00 0.96 1.41 0.49 
2.50 0.93 1.42 0.38 
3.00 0.91 1.45 0.24 

For spheroid H = 1 

0.50 1.25 1.46 0.72 
1.00 0.91 1.26 0.53 
1.50 0.82 1.31 0.35 
2.00 0.81 1.41 0.24 
2-50 0.83 1-52 0.15 
3-00 0.87 1-63 0.12 

For ellipsoid 6/G = a, H = 4 

1.00 0.174 0.121 0.116 
1-50 0.138 0.100 0.115 
2.00 0.113 0.091 0.106 
2.60 0.097 0.085 0.093 
3.00 0.087 0.080 0.080 

For ellipsoid 6/a = a, H = 2 

1.00 0.128 0.090 0.094 
1.50 0.098 0.075 0.084 
2.00 0.080 0.073 0.068 
2.50 0.072 0.073 0.052 
3.00 0.070 0.076 0,039 

2.28 0.141 
1.51 0.137 
1.10 0.112 
0.83 0.093 
0.61 0.082 
0.46 0.075 

1.89 0 
1.00 
0.60 
0.34 
0.20 
0.14 

0.173 0 
0.142 
0.118 
0.099 
0.084 

x 10-1 

0.138 0.120 
0.099 0.115 
0.072 0.088 
0.052 0.064 
0.038 0.052 

1: 

0.206 
0.147 
0.113 
0.094 
0.084 
0.077 

0 

0 

x 10-1 

0.137 
0.090 
0.071 
0.063 
0.058 

TABLE 1. Strip method approximations 

H z  

0.012 
0.044 
0.058 
0.055 
0.048 
0.040 

0 

H: 

0.072 
0.150 
0,096 
0.079 
0.065 
0.053 

0 

0 0 

x 10-1 

0.019 
0.049 
0.066 
0.060 
0.049 

x 10-1 

0.074 
0.088 
0.077 
0.060 
0.048 

It is clear from (6.1) and (6.4) that the hydrodynamic quantities associated 
with roll behave in the same fashion as those associated with sway in a lower 
frequency range. Making use of the cylinder data, the values of the normalized 
added mass M i ,  damping coefficient N i  for heave, and the normalized added 
moment of inertia I ;  and damping coefficient H$ for roll, are computed by the 
strip method formula (4.10). The estimated results are shown together with the 
actual values in table 1. The strip method does not give a satisfactory estimate 
for the three-dimensional problem. Beyond the value of a = 2.00, estimated 
values of 1; and H; approach actual values. For ellipsoids, estimated values of 
M i  and N ;  also become close to the actual value after passing the value a = 2-00. 
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